Gate-Controlled Helical Luttinger Liquid In InAs/GaSb Edges

Rui-Rui Du

Rice University/Peking University

AKNOWLEDGE

Rice Ivan Knez Lir

Lingjie Du

Peking U Tingxin Li

Collaborations

Teledyne Gerry Sullivan

Stanford Kathryn Moler Eric Stanton

OUTLINE

- 1. InAs/GaSb: Materials and Devices
- 2. Quantized and Non-quantized Transport
- **3. 1D- Helical Luttinger Liquid Transport**
- 4. Outlook: Tuning the Interactions

6.1 A Family

- Band parameter
 ▲E = E1 H1
 tuned by width, x, gates
- 2. ∆E < 0 inverted -0.15 eV to 0 Tunneling mix e-h and opens a gap at finite k-vector

Wafer and Device

General Quality

Ivan Knez, Ph. D thesis, Rice University 2011 http://www.ruf.rice.edu/~dulab/index.html

Quantized and Non-quantized Edge Transport

Si-doping at the interface

Si: donor in InAs, acceptor in GaSb

*Localize residual e and h

*Less effective for hybridized *e-h*

* Dipole field opposite to carrier field

Conductance of Helical Edge Modes: Nonlocal -Transport

• For phase coherent sample Landauer-Buttiker formula gives conductance value

 Longer samples can be modeled by inserting phase breaking probes and applying Buttiker formula:

$$G_{12,34} = \frac{2e^2}{h} \left(\frac{\lambda_{\varphi}}{L} + \left(\frac{\lambda_{\varphi}}{L} \right)^2 \right)$$

Conductance Plateau up to 4 K

Lingjie Du

Non-Local Edge Transport: H-Bar

Lingjie Du

SQUID Imaging of InAs/GaSb Edge Modes

Properties of InAs/GaSb Edge States

- Quantized plateau for short samples (a few μ m)
- Non-quantized conductance for long samples
- Conductance nearly T-independent over large range of T
- Robust under high B

Low velocity of edge modes

$$v_F \sim 2 x 10^4 m/s$$

 $k_F \sim 1 x 10^6/cm$

- •Extreme. long scattering time $\tau = \lambda/\upsilon_F = 4\mu m/(2x10^4 m/s) \sim 200 \ ps$
- •Origins of back-scattering?
- •Tunable mode dispersion

Interaction Effects in InAs/GaSb Helical Edge States

Non-Interacting Model:

- 1. TRS protected topological Insulator
- 2. Spin-momentum locking
- non-magnet. impurity does not cause backscattering

Non-linear Edge Channel Conduct.

C. L. Kane and M. P. A. Fisher, Transport in a one-dimensional Luttinger liquid, *Phys. Rev. Lett.*. **24**, 1220 (1992); Phys. Rev. B**46**, 15233 (1992)

M. P. A. Fisher and L. Glazman, Transport in a one-dimensional Luttinger Liquid. Wu, C., Bernevig B. A. & Zhang S. C. Helical liquid and the edge of quantum spin Hall systems. *Phys. Rev. Lett.* **96**, 106401 (2006).

Teo, J. C. Y. & Kane, C. L. Critical behavior of a point contact in a quantum spin Hall insulator. *Phys. Rev. B* **79**, 235321 (2009).

Maciejko, J. *et al*. Kondo effect in the helical edge liquid of the quantum spin Hall state. *Phys. Rev. Lett.* **102**, 256803 (2009).

Family of Luttinger Liquids

Carbon Nanotube (Spin-Full LL)

- Metal contacts connect to rope of carbon nanotubes, serve as tunneling probes.
- $G \propto T^{\alpha}$, $dI/dV \propto V^{\alpha}$; $\alpha_{\text{bulk}} \sim 0.3$, $\alpha_{\text{end}} \sim 0.6$

M. Bockrath et al., Nature 397 598 (1999).

Carbon Nanotube (Spin -Full LL)

- Transport through Single-wall carbon nanotubes (SWNTs) with a kink.
- $G \propto T^{\alpha}$, $dI/dV \propto V^{\alpha}$

Z. Yao *et al.*, *Nature* **402** 273 (1999).

Quantum wires (Spin-Full LL)

- High-quality quantum wires fabricated in GaAs-AlGaAs by using cleaved edge overgrowth.
- The conductance plateaus deviate from the universal quantized value at low temperature and low bias.
- $dI/dV = c + AV^p$

A. Yacoby *et al.*, *PRL* 77 4612 (1996).

Fractional Quantum Hall Edge (Chiral LL)

Cleaved-edge overgrowth

• $dI/dV \propto V^{1.7}, G \propto T^{1.75}$

A. M. Chang *et al.*, *PRL* **77** 2539 (1996).

Interacting Model: 1 > K > 1/2; 1/2 > K > 1/4; Correlated 2-Particle Scattering is Allowed by TRS

C. Wu, B. A. Bernevig, and S. C. Zhang, Phys. Rev. Lett.
96, 106401 (2006).
C. Yu and J. E. Maara, Phys. Rev. B 73, 045322 (2006).

C. Xu and J. E. Moore, Phys. Rev. B 73, 045322 (2006).

2 particle correlated Backscattering for k < 1/4

---Breaking into two segments

PHYSICAL REVIEW B 73, 045322 (2006)

FIG. 1. An allowed two-particle backscattering process: (a) particle at momentum p_1 scatters to intermediate state $-p_2$; (b) particles at $\pm p_2$ interact and become intermediate states $\pm p_1$; (c) and (d), particle at intermediate state p_1 backscatters to state $-p_2$.

Calculating Luttinger Parameter *K*

PRB 79 235321 (2009), and PRL 102 256803 (2009):

$$K = \left[1 + \frac{2}{\pi^2} \frac{e^2}{\varepsilon \hbar v_F} \ln\left(\frac{7.1d}{\xi + 0.8w}\right)\right]^{-1/2}$$

Where ε is the bulk dielectric constant,

 v_F is Fermi velocity of edge state,

d is the distance from the QW layer to a nearby metallic gate as a screening length for the Coulomb potential,

 $\xi = 2\hbar v_F / E_{gap}$ (E_{gap} is the gap of bulk QSHI) w is the thickness of the QW layer.

HgTe/CdTe Quantum Wells K = 0.8Gated InAs/GaSb Bilayers $K = 0.2 \sim 0.25$ Strained InAs/InGaSb QWs 0.5 > K > 0.25

Possible Interacting Effects

Maciejko et al, PRL 09 Teo and Kane, PRB 09

Helical Liquid with strong Coulomb interactions: *1.Log T-dependence at high T*

2. Insulating phase at low T

Relevant to InAs/GaSb

2 Samples for Ultralow T Measurements

K~0.21

Cooling Electrons

Purdue Group: Gabor Csathy / Kate Schreiber **PKU group:** Xi Lin/ Pengjie Wang, Hailong Fu

He3 Immersion Cell

Down to 6.9 mK:

Tingxin Li

DC + ac

4-terminal Resistance: L= 10um Strongly nonlinear with bias current →

Voltage drops across $eV=R_{xx}$, I_{ac}

Temperature or DC bias -dependent

Wafer A Scaling Relation

• Conductance and differential conductance scale as power-laws with temperature and bias voltage, respectively.

Wafer B, quantized plateaus

Wafer B, LL behavior

Comparison of two wafers

Wafer A Power exponent $\alpha \sim 0.16$,

$$\alpha = 2(1/4 \text{K-1}) \rightarrow \text{K} \sim$$

•

$$\alpha = 2(1/4 \text{K-1}) \rightarrow \text{K} \sim$$

0.23

0.21

 Both two wafers tend to form a charge insulator at T = 0 and V = 0, consisting with the theoretical predictions for strong interacted helical edge states, i.e. Helical Luttinger-Liquid. InAs/GaAs edge transport can be explained based on Luttinger Liquid

Microscopic details to be understood

1) **Short edges** with Fermi liquid leads: Quantized conductivity 2e²/h

2) **Long edges** with Fermi liquid leads: reduced cond. from 2e²/h

- 3) $eV >> k_BT$ Large bias regime: no T- dependence
 - eV << k_BT Small bias regime: no eV –dependence
 - $eV \sim k_BT$ Conductance scaling in eV/K_BT

Outlook: Tuning the Interactions

"Mean Free Path" Increases with V_F

Magnetic Response Depends on V_F

Less Interacting Edge States

Quantum Point Contact

Shot Noise e/2 Quantum Critical Point

Teo & Kane, 2009

Tunneling Into Phase Controlled Junction

Phase Control $\delta/\Delta^{0.2}$ 2π Phase ϕ 0 2 1 0 200 -200 0

SUMMARY

- 1) Robust Quantum Spin Hall Effect
- 2) InAs/GaSb Helical Edge: clean and highly-tunable 1D system
- 3) Strong Evidences for Helical Luttinger Liquid Microscopic details to be understood

New opportunities to study 1D correlation effects and related fractional charge and fractional Josephson effect

Temperature-dependent in small-bias regime

Quantum Point Contact

Shot Noise e/2 Quantum Critical Point

Tunneling Into Phase Controlled Junction

Phase Control $\delta/\Delta^{0.2}$ 2π Phase ϕ 0 2 1 0 200 -200 0

AKNOWLEDGE

Rice

Ivan Knez

Lingjie Du Ruiyuan Liu

Jie Zhang

Peking U Tingxin Li Xiaoyang Mu

Collaborations Teledyne Gerry Sullivan

Stanford Kathryn Moler Eric Stanton

SQUID Imaging

Theory: Carol Beenakker Kai Chang Matt Foster Liang Fu Dmitry Pikulin Shoucheng Zhang

Among many others

SUMMARY

1) Robust Quantum Spin Hall Effect

- 2) InAs/GaSb Helical Edge: clean and highly-tunable 1D system
- 3) Strong Evidences for Helical Luttinger Liquid must understood before engineering Majorana bound states New opportunities to study 1D correlation effects and related fractional charge and fractional Josephson effect

Small g* ~ 0.5 PRB**83**, 155412 (2011)

 $^{-2}_{V_{front}}(V)$

-1

-3

New Wafer (Strained QW) Preliminary Data

Opening of Edge Gap by Perpendicular B

Strained QW of 100 um length

•B = 0: Weak resistance dip already at Dirac point

•Dip deepens with B

•Gap not fully open

 Γ ~ 1K

Tunneling DOS: STM

InAs/GaSb Majorana Platform

General Design

 $L = 0.1 \sim 1 \mu m$

Direct Writing on Cleaved Edge

InAs is SC-Friendly: Standard Nb-InAs-Nb

Knez, Du, Sullivan 09

Andreev Reflection of Nb-(InAs/GaSb)-Nb Junction

Goal: Creating MBS on the Edge

Main challenges:

1. Supercurrent -- small v_F

2. Soft induced-SC gap -interface roughness etc

2. Terminating edge --

On-Going Experiment towards Isolation

Magnetic Impurity and Supercurrent Isolation

Tunneling Into Phase Controlled Junction

Phase Control

-200

Ø

62

200

AKNOWLEDGE

Rice

Ivan Knez

Lingjie Du Ruiyuan Liu

Jie Zhang

Peking U Tingxin Li Xiaoyang Mu

Collaborations Teledyne Gerry Sullivan

Stanford Kathryn Moler Eric Stanton

SQUID Imaging

Theory: Carol Beenakker Kai Chang Matt Foster Liang Fu Dmitry Pikulin Shoucheng Zhang

Among many others

SUMMARY

1) Robust Quantum Spin Hall Effect: current technology 77K

2) InAs/GaSb Helical Edge: clean and highly-tunable 1D system limited only by intrinsic factors

3) InAs/GaSb Edge + Superconductor: a realistic route towards Majorana bound State

