Visualizing Electronic Structures of Quantum Materials

- By Angle Resolved Photoemission Spectroscopy (ARPES)

PART B: New Frontier in ARPES

Yulin Chen

Oxford University / Tsinghua University

www.arpes.org.uk

Yulin.Chen@physics.ox.ac.uk; yulinchen@mail.tsinghua.edu.cn

New Frontiers

Explore electron dynamics

Long lived surface electrons of Bi₂Se₃

J. Sobota, et al. Phys. Rev. Lett. 108, 117403 (2012)

Physical process

Measurement

Spin resolved ARPES

New frontier

Explore electron spin

Spin information is important for:

- Topological quantum materials
- CMR materials
- Novel superconductivities
- Multiferroic materials
- Heavy fermion systems
- Spintronics applications

Materials with spin-dependent electronic structure

k

Exotic spin states: Topological insulators

"Locking" of current & spin

TKy I

3D Topological insulator

Mott scattering spin polarimeter

Mott scattering spin polarimeter

Figure of Merit

$$\begin{split} A &= \frac{I_{left} - I_{right}}{I_{left} + I_{right}} = PS \quad \Rightarrow \quad P = \frac{A}{S} \Rightarrow \Delta P = \frac{\Delta A}{S} = \sqrt{\frac{1}{IS^2}} \\ \Delta A &= \sqrt{(\frac{\partial A}{\partial I_{left}})^2 (\Delta I_{left})^2 + (\frac{\partial A}{\partial I_{right}})^2 (\Delta I_{right})^2} \\ &= \sqrt{(\frac{2I_{right}}{(I_{left} + I_{right})^2})^2 I_{left} + (-\frac{2I_{left}}{(I_{left} + I_{right})^2})^2 I_{right}} \\ &\text{as} \quad I = I_{left} + I_{right} \\ &= \sqrt{\frac{4I_{left}I_{right}}{I^3}} \\ &\quad 4I_{left}I_{right} = I^2(1 - P^2S^2) \Rightarrow \quad 4I_{left}I_{right} \approx I^2 \\ &\approx \sqrt{\frac{1}{I}} \\ &\Rightarrow \quad \Delta P = \frac{\Delta A}{S} = \sqrt{\frac{1}{IS^2}} \end{split}$$

Figure of Merit

$$\Delta P = \frac{\Delta A}{S} = \sqrt{\frac{1}{IS^2}}$$

To minimize ΔP , we need to maximize IS^2

So normalized by the total initial flux I_0 , the index is defined as "Figure of Merit" (FOM)

$$FOM = S^2 \frac{I}{I_0}$$

Mott scattering spin polarimeter

$$N^+ = \sqrt{L_{\uparrow}R_{\downarrow}}$$
 $N^- = \sqrt{R_{\uparrow}L_{\downarrow}}$

$$L_{\uparrow} = nNE_{l}\Omega_{l}(\Delta r, \Delta\theta)\sigma(\theta + \Delta\theta)(1 + PS(\theta) + P\frac{\partial S}{\partial\theta}\Delta\theta)$$
$$R_{\uparrow} = nNE_{r}\Omega_{r}(\Delta r, \Delta\theta)\sigma(\theta + \Delta\theta)(1 - PS(\theta) + P\frac{\partial S}{\partial\theta}\Delta\theta)$$

$$L_{\downarrow} = n' N E_l \Omega_l(\Delta r, \Delta \theta) \sigma(\theta + \Delta \theta) (1 - PS(\theta) - P \frac{\partial S}{\partial \theta} \Delta \theta)$$

$$R_{\downarrow} = n' N E_r \Omega_r(\Delta r, \Delta \theta) \sigma(\theta + \Delta \theta) (1 + PS(\theta) - P \frac{\partial S}{\partial \theta} \Delta \theta)$$

$$A = \frac{N^{+} - N^{-}}{N^{+} + N^{-}} = PS$$

Mott scattering spin polarimeter

Spin-resolved laser **ARPES**

Spin-orbital splitting of the surface state band

Spin-resolved laser ARPES

Sb(111) Surface state

Structural Aspect

Spin-resolved laser **ARPES**

Spin direction of the FS

Z. Xie, et. al., Nature Comm 5:3382 (2014)

1D Spin detection

C. Jozwiak, et. al., Phys. Rev. B. 84, 165113 (2011)

1D Spin detection

Spatially resolved ARPES

Explore electronic structure with spatial resolution

Materials with local compositional inhomogeneity

Fe-based superconductor

Explore electronic structure with spatial resolution

How to achieve nm scale spatial resolution

Spatially-resolved ARPES

Preliminary study – element enhanced mapping

Sample manipulator & Zone plate holder

 θ = - 15°

