High-Temperature Superconductivity and Strong Correlations

Zheng-Yu Weng

Institute for Advanced Study Tsinghua University, Beijing

Outline

- High-T_c superconductivity: A general survey
- High-T_c cuprates as strongly correlated electron systems
- Mott physics: Basic organizing principles
- Examples
- Understanding of the phase diagram
- Summary and conclusion

Discovery of high-T_c superconductors

Phase Diagram of High Temperature Superconductors

Cu-Based Superconductors

Fe-Based Superconductors

charge doping only

charge doping, isovalence doping, pressure,

Landau paradigm

Fermi surface of copper

Fermi sea

Fe-based SC

 $\boldsymbol{\varepsilon}_{k},\,\boldsymbol{Z}_{k}$

X. J. Zhou et al.

Phys. Status Solidi A (2010)

Landau's Fermi Liquid

Fermi degenerate temperature $T_F = E_F / k_B$

$$T_F = E_F / k_B$$

$$E_F \sim 1eV \approx 10,000K$$

 $T << T_{\scriptscriptstyle F}$ typical Fermi liquid behavior:

$$ho \propto T^2 / E_F$$
 Quasiparticle
 $C_v = \gamma T$ Sommerfeld constant
 $\chi_s = const.$ Pauli susceptibility
 $1/T_1 \propto T$ Korringa behavior

Cuprate superconductors

charge localization at low doping

ARPES result: A broad peak at x=0

Ando et al, PRL 87, 017001 (2001)

K. M. Shen et al, PRL 93, 267002 (2004)

Cuprate superconductors

Spin susceptibility (T. Nakano, et al. (1994))

Specific heat (Loram et al. 2001)

Cuprates systematically violate the Fermi liquid behavior!

NMR spin-lattice relaxation rate (T. Imai et al. (1993))

Uniform spin susceptibility

Resistivity measurement

T. Nakano, et al. PRB49, 16000(1994)

Vortex Nernst effect and diamagnetism in the pseudogap regime

Xu et al., Nature (2000), Wang et al., PRB (2001).

LI et al. PHYSICAL REVIEW B 81, 054510 (2010)

antiferromagnetic order d-wave superconducting order

Pseudogap physics: `normal state'

pseudo spin gap (short-range antiferromagnetic order)

Fermi surface reconstruction (Fermi arc & antinodal)

charge modulation: stripes, CDW,

nematicities

transport (resistivity, Nernst effect, quantum oscillation in magnetic field...)

thermodynamic properties (specific heat, spin susceptibility, diamagnetism)

.

Essential question: Any intrinsic connection between the pseudogap phase and high-Tc superconductivity?

Outline

- High-T_c superconductivity: A general survey
- High-T_c cuprates as strongly correlated electron systems
- Mott physics: Basic organizing principles
- Examples
- Understanding of the phase diagram
- Summary and conclusion

瞎子摸大象一唯象理论方法

General strategy:

$$H\psi = E\psi$$

reduced problem which is solvable:

$$H_{0}\tilde{\boldsymbol{\psi}} = \tilde{E}\tilde{\boldsymbol{\psi}}$$

adiabatic continuity:

$$H_0 + H_1 \Longrightarrow H$$

 H_0 or $\tilde{\Psi}$ should account for the systematic essential features of anomalous properties with the rest as perturbative results from H_1

Fermi Gas State for Fermion Liquids

Fermion signs

$$\psi(x_1, x_2,...) = -\psi(x_2, x_1,...)$$

Landau Fermi Liquid

$$T \ll T_F$$

$$T_F = E_F / k_B$$

 $\chi_s = const.$

 $1/T_1 \propto T$

Quasiparticle

Sommerfeld constant

Pauli susceptibility

Korringa behavior

BCS theory for superconductivity

electron pairing by "glueon": phonon, AF fluctuations, ...

$$T_c = \omega_0 e^{-\frac{1+\lambda}{\lambda-\mu^*}}$$

 λ -- coupling constant μ^* -- Coulomb

pseudopotential

 ω_0 -- characteristic energy of the glueon

Strong coupling theory

Pb: $T_c=7.19 \text{ K}$ $\lambda=1.55$, $\mu^*=0.13$, $\omega_0=4.8 \text{ meV}$

 $Nb_3Ge: T_c=21.2 K$

 $\lambda = 1.73, \mu^* = 0.12,$

 ω_0 =10.7 meV

High-T_c cuprates: T_c ~ 160 K

FeAs based superconductors: $T_c \sim 56 \text{ K}$

typical energy scales:

 $\Theta_D \sim 300K$ $J \sim 300 - 1,500K$

What is the gluon in the iron-based superconductors?

- Fermi surfaces are well defined (ARPES) and BCS theory may be applicable
- Tc is high (55K)
- SC and SDW phases are adjacent: magnetic origin of the gluon
- AF fluctuations persist over a wide temperature and doping regime

Mechanism of superconductivity in high- T_c cuprates: What is the most essential issue?

 $H_0 \Leftrightarrow \text{Ground state wavefunction} \neq \text{Cooper pair condensation} \\ + \text{additional structure} \\ + \text{Cooper pair condensation} \\ + \text{Cooper pair condensation}$

BCS like: d-wave pairing symmetry;

Bogoliubov nodal quasiparticle; GL equation (low-energy, long distance)

additional structure (short-range, high-energy)

non-FL-like: pseudogap, AF, strange metal, ...

quantum order? long-range entanglement? fractionalization? competing order?

Half-filling: Low-energy physics is described by Heisenberg model

$$H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

large J = 135 meV

quantum spin S = 1/2

neutron scattering

$$S^{\alpha\beta}(Q,\omega) = \frac{1}{2\pi\hbar} \int_{-\infty}^{+\infty} dt \exp(-i\omega t) < S_Q^{\alpha} S_{-Q}^{\beta}(t) >$$

Raman scattering

$$I(\omega) = \sum_{i} \delta(\omega - (E_i - E_0)) |\langle 0 | H_R | i \rangle|^2$$

$$H_R = \sum_{\langle ij \rangle} (\mathbf{E}_{\text{inc}} \cdot \boldsymbol{\sigma}_{ij}) (\mathbf{E}_{\text{sc}} \cdot \boldsymbol{\sigma}_{ij}) \mathbf{S}_i \cdot \mathbf{S}_j$$

Spin flip breaks 6 bonds, costs 3J.

Antiferromagnetism at x=0 is well described by the Heisenberg model

Recent neutron-scattering data for the spin-correlation length in La₂CuO₄ can be fitted quantitatively with an analysis of the quantum mechanical nonlinear σ model in two space dimensions. The coupling constant must be chosen in the range where an isolated CuO₂ layer has antiferromagnetic order at T=0. The parameters are consistent with the spin-wave theory for the nearest-neighbor spin- $\frac{1}{2}$ Heisenberg antiferromagnet on a square lattice.

Cuprates = doped Mott Insulator

Anderson, Science 1987

one-band large-U Hubbard/t-J model:

$$H_t = -t \sum_{\langle ij \rangle \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + H.c.$$

$$H_J = \sum_{\langle ij \rangle} \left(\mathbf{S}_i \cdot \mathbf{S}_j - \frac{n_i n_j}{4} \right)$$

$$\sum_{\sigma} c_{i\sigma}^{\dagger} c_{i\sigma} \leq 1$$

Mott insulator

Heisenberg model

doped Mott insulator

t-J model

Doping the Mott Insulator/ antiferromagnet

Mott insulator

Heisenberg model

doped Mott insulator

t-J model

A minimal model for doped Mott insulators: t-J model

$$H = -t \sum_{\langle ij \rangle} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + h.c. \right) + J \sum_{\langle ij \rangle} \left(\mathbf{S_i} \cdot \mathbf{S_j} - \frac{1}{4} n_i n_j \right)$$

$$\sum_{\sigma} c_{i\sigma}^{+} c_{i\sigma}^{-} \leq 1$$

Cuprates = doped Mott Insulator

Anderson, Science 1987

one-band Hubbard model:

$$H_t = -t \sum_{\langle ij \rangle \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + H.c.$$

$$H_J = \sum_{\langle ij \rangle} \left(\mathbf{S}_i \cdot \mathbf{S}_j - \frac{n_i n_j}{4} \right)$$

$$\sum_{\sigma} c_{i\sigma}^{\dagger} c_{i\sigma} \leq 1$$

Half-filling: Mott insulator

QCP

Underdoped phase diagram

d-wave superconducting order

The Central Dogma

"Any correct theory must be consistent with anomalous behavior of a bewildering variety of experimental probes, in addition to the very basic requirement of being internally consistent, ..., and *nothing else.*"

---P. W. Anderson

The theory of superconductivity in the high-Tc cuprates 1997 by Princeton University Press

Short summary of part I:

- Cuprate superconductors are different from iron-based superconductors: e.g. pseudogap phase
- Pseudogap state is firmly established by experiment as one of the most exotic phases in the cuprates which is closely related to high-T_c superconductivity
- Doped Mott insulator/antiferromagnet provides a suitable microscopic model to understand the cuprate physics