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❑ Topology：an area of mathematics concerned with the properties of space  
that are preserved under continuous deformations.

=
Topological  
  equivalent

J. E. Moore, Nature  (2010）

Topology



Shiing-Shen Chern  
    陈省身先⽣生

❑ Topological invariant： invariant under continuous transformation

Gauss-Bonnet-Chern formula:

Gauss curvature genus

Topological invariant

❑ Connect the geometry to the topology.  
❑ For 2D compact manifold, the topological invariant is the genus or 
Euler characteristic.



Hall effect

2015/7/20

Edwin	
  Hall	
  	
  
	
  	
  (1879)

      Hall  
resistance 

Charge carrier is subjected to the electric field  
force and Lorentz force:

For steady state，the resultant force in y direction is zero.

Current density 
in x direction

Hall resistivity

carrier charge

Application of Hall measurement： 

❑ measure the carrier density. 
❑ ascertain the carrier type. electron（e<0） hole（q>0） 

carrier density



Quantum Hall effect

K.Von klitzing 
     (1980) 

❑ Under low temperatures and strong 
magnetic fields, the Hall conductance 
take on the quantized values. 

❑  Resistance quantum



Quantum Hall effect
❑ Quantum Hall  state provided the first example of a quantum state  
     topologically  distinct from all states of matter known before.  

Small perturbations to the  system  
Small changes of physical quantities.  

Hall resistance does not change 
at all if the perturbation is small

❑ The physical quantities are related to topological invariants

Quantum Hall effectNormal physical quantities



分数量⼦子霍尔效应  

D. C. Tsui, H. L. Stomer et al (1982) J. P. Eisenstein  et al., (1990)

➢从整数量⼦子霍尔效应到分数量⼦子霍尔效应 
❑ 更⾼高质量的样品，更强的磁场，更低的温度    
❑ 霍尔电阻分数量⼦子化。   
➢ 理论⽅方面 
❑  电⼦子在强磁场和相互作用下的集体⾏行为. 
❑   准粒⼦子带有分数电荷     

p，q 为正整数



Topological origin of Quantum Hall effect

Laughlin’s gedanken experiment

p Adding                           maps the 
system back to itself 

p  The energy increase satisfy 

p  n is an arbitrary integer 

        R. B. Laughlin, PRB (1981) 

TKNN number  (Chern number)

TKNN, PRL (1982)

Brillouin zone Bloch Bands  

Bloch Bands  

p The Hall conductance is topological 
invariant (Chern number), which 
can only take integer values. 



Edge states in Quantum Hall effect 

B
Quantum Hall effect

❑ The bulk states form Landau Levels 

❑  The bulk of the sample is insulator，but it is distinct from   
     normal insulator. The current flow on the edge of the sample. 

❑ Chiral edge transport 

      



Chiral edge states. 
Break TRS with B or M. 
No backscattering. 

Helical edge states. 
Preserve time reversal symmetry (TRS). 
No backscattering for TRS perturbations. 

Quantum Hall effect à  Quantum spin Hall effect 

CL Kane, EJ Mele, PRL, 95, 226801, (2005). 
BA Bernevig, TL Hughes, SC Zhang, Science, 314, 1757 (2006).



Quantum Hall effect à Z2 Topological Insulator

M. Z. Hasan et. al. (review) arXiv: 1406.1040v1.



Helical surface states of  3D strong topological insulator

 Gapless surface states No backscattering for 
nonmagnetic impurities. 

M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010). 
X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011). 



Realization of Quantum spin Hall effect

B.A Bernevig  et al.,  Science 314,1757 (2006)

Normal insulator QSHE 

 HgTe/CdTe quantum wells

Quantized to predicted values

 InAs/GaSb quantum wells

Ivan Knez et al., Phys. Rev. Lett. 107, 136603 (2011)  
L. J. Du et al.,     arxiv:1306.1925v1 (2013)  



Transport measurement of QSHE

M König, et al., Science 318, 766 (2007).

HgTe/CdTe Quantum well
➢ d<dc  normal insulator 

➢d>dc  2D Topological insulator 
     
p  In small samples, R14,23   
 is quantized, insensitive to W  
 variations. 
       
p  In large samples, R14,2 3    
is no longer quantized. Why? 
       
p QSH signal is robust against 
temperature change.    
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p  Normal dephasing: the electron-electron and electron-phonon 
interactions only destr0y the electron phase memory. These 
dephasing strengths increase with rising temperature.    

p Spin dephasing: Magnetic impurities, nuclear spin fluctuations 
and normal dephasing with strong spin-orbital interaction may 
destroy spin memory.  

 

Dephasing effects on 2D quantum Spin hall insulators

 Try to answer the questions: 
p Why longitudinal resistance only quantized  in small sample ？ 
p Is there an observable physical quantity showing a quantized  
value in macroscopic samples ？

Two types of dephasing
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• The first term describes QSHE.  This term can 
also describe QHE if the flux is spin independent. 
• We use virtual leads to model dephasing 
processes. 

The dephasing mode for a QSHE system

H. Jiang, S.G. Cheng, Q.F. Sun, and X.C. Xie, PRL 103,036803(2009)

M. Buttiker, Phys. Rev. B 33 3020 (1986)



The particle current in the lead-p (real or virtual lead)  with spin       can be expressedσ

First type dephasing processes: normal dephasing

For each virtual lead  i i iV V
↑ ↓
≠

Second type dephasing processes: spin dephasing

The spin flip processes  are forbidden.

The spin flip processes are allowed.

For each virtual lead  i

i i 0I I
↑ ↓
= ≡

i i 0I I
↑ ↓
+ ≡

Theoretical formalism and dephasing processes

H. Jiang, S.G. Cheng, Q.F. Sun, and X.C. Xie, PRL 103,036803(2009)



The dephasing  in QHE system 

3 , 32 , 32 , 24FE t L a W a M a= − = = =

• The Fermi  energy is fixed near the 
band bottom. 
• The QHE is robust against dephasing.



• Fig.(a) illustrates the normal dephasing 
while Fig.(b) is for the spin dephasing. 

•In the low field, the result is consistent to 
that of the semi-classical Drude model. 

•The dephasing strength is characterized by 
Γ

Dephasing  in QSHE system 

H. Jiang, S.G. Cheng, Q.F. Sun, and X.C. Xie, PRL 103,036803(2009)

The transport property is robust to normal dephasing, but 
fragile to spin dephasing.

3 , 32 , 32 , 24FE t L a W a M a= − = = =



eff eff

3 , 24
0.5, 32 ....( ) 0.3, 32 ....( )

FE t M a
B W a a B L a b

= − =

= = = =

•The dashed line denotes the spin dephasing 
process, and the solid line denotes the normal 
dephasing process.

H. Jiang, S.G. Cheng, Q.F. Sun, and X.C. Xie, PRL 103,036803(2009)

Dephasing in QSHE system: II 

The QSH signal is insensitive to width variation but sensitive 
to the length change.
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for a given edge

in the absence of dephasing
in the present of dephasing

spin flip 

1

p pV V

I
↑ ↓
−

1 1 4 4V V V V V
↑ ↓ ↑ ↓
= = − = − =

H. Jiang, S.G. Cheng, Q.F. Sun, and X.C. Xie, PRL 103,036803(2009)

Spin accumulations: formula and reasoning  



3 , 24 , 32 , 32FE t M a W a L a= − = = =

Rs is robust against any dephasing 
processes

2, 3, 5, 6,s s s sR R R R= = − = −

H. Jiang, S.G. Cheng, Q.F. Sun, and X.C. Xie, PRL 103,036803(2009)

Dephasing  in QSHE system 
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Dephasing in QSHE system IV: HgTe/CdTe QWs

：	
  HgTe/CdTe QWs model

p  The longitudinal resistance of HgTe/CdTe QWs is insensitive to 
normal dephasing but sensitive to the spin dephasing. 

p Numerical calculation is consistent with the experimental data. 

Normal dephasing Spin dephasing Experiments

H. Jiang, S.G. Cheng, Q.F. Sun, and X.C. Xie, PRL, 103, 036803 (2009). 
H. Jiang, S.G. Cheng, Q.F. Sun, and X.C. Xie, Physics, 40, 454 (2011).



p The spin dephasing plays important roles in QSHE, it makes the 
quantized longitudinal resistance only observable in mesoscopic 
systems. However, the spin accumulation measurement that is robust 
against any dephasing may provide a new playground. 

p As far as helical edge state is not destroyed, the spin Hall resistance is 
quantized，independent of  model or material detail.  Therefore, it can 
better reflect the topological nature of QSHE. The spin Hall resistance 
can be measured by measurements of the polarization resistance.  

                                                                                                 

 Conclusion on dephasing effect in 2D quantum Spin Hall insulators
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T. Sato, et al., Nature Physics 7, 840 (2011); Su-Yang Xu et al., arXiv: 1206.0278. 

Anomalous ‘gap-like’ features around the Dirac point

p The surface states acquire ‘gap-
like’ feature before the TQPT 
point. 

p The surface state preserve the 
TRS. 

p The typical gap is 50 meV for 
x=0.9.

Anomalous ‘gap-like’ features in TlBi(S1-xSex)2 surface states

p TQPT in a tuneable spin  orbital system. 
p The TQPT occur at critical point  δ = 0.5.



What mechanism leads to the anomolous ‘gap-like’ feature in  
helical surface states?

❑ in the strong 3D topological insulator 
❑ preserve the spin-momentum locking (helical) property 
❑ no magnetic impurity, thus no spin dephasing 
❑ large sample thickness, thus no finite size effect

Re-examine the normal dephasing effect.

Anomalous ‘gap-like’ features in TlBi(S1-xSex)2 surface states



The role of dephasing effect on backscattering

The π Berry phase between A-path and B-path eliminates 
the backscattering. 

Without dephasing 



The role of dephasing effect on backscattering

The phase uncertainty between A-path and B-path leads 
to backscattering. 

With normal dephasing: 
Phase uncertainty due to 
e-e and e-ph interactions 



Scattering process of helical surface states

Surface states Hamiltonian:

The scattered wave function:

The scattering amplitude:

The scattering cross section:

( ),in outf θ θ

( ) ( )
2

, ,in out in outfσ θ θ θ θ=

The scattering process is determined by the scattering 
cross section                 .( ),in outσ θ θ

( ) ( )( ),
1 out

in

Tiin out ikr
k

f
r e e

r
θθ θ

ψ ϕ= +!
!



The backscattering amplitude: without dephasing

First order:

Second order:

The scattering amplitude:

p. No Backscattering without dephasing because of 
destructive interference  between A-path and B-path.

H.W. Liu, H. Jiang, Q.F. Sun, and X.C. Xie, PRL 113, 046805 (2014)



The backscattering amplitude: with normal dephasing

The backscattering cross-section:

First order:
( )1 , 0out in inσ θ π θ θ= + =

Second order:

Phase uncertainty: 
Scatter strength:  
Impurity distance:

2 1R R−
Γ

2δϕ

p. Normal dephasing causes backscattering at the second order 
process, while the first order backscattering cross section remains zero. 



Backscattering cross-section: Anderson impurity and charge impurity

Anderson impurity:

Backscattering cross-section:

Charge impurity:

Backscattering cross-section:

2k∝ Dominant at high energy

21 k∝

Dominant at low energy

p Combination of dephasing and charge impurity cause 
extremely large backscattering around the Dirac point.



Combined effect of dephasing and charge impurity scattering 

Band broadening effect of surface quasi-particle:

Total transport cross section: 
Charge impurity concentration: 
Dephasing time:                          

Temperature dependent

The imaginary part of quasi-particle self energy:



Comparison with experimental results

Experiment: 
T. Sato, et al., Nature  
Physics 7, 840 (2011).

Simulation:  
Bandwidth broadening effect.

The	
  large	
  ratio	
  of	
  S	
  substitution	
  for	
  Se	
  	
  
(>10%)	
   may	
   lead	
   to	
   substantial	
   crystal	
  
vacancies,	
  and	
  these	
  vacancies	
  play	
  the	
  
	
  role	
  of	
  charge	
  impurity.



Conclusion on dephasing effect in 3D TIs

➢    3D  TIs  surface  states:  

❑ The combined effect of normal dephasing and impurity 
scattering can cause backscattering in the helical SS.  

❑ Normal dephasing and charge impurity cause large 
backscattering around the Dirac point, and leads to the 
anomalous ‘gap-like’ features found in recent experiments.
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Background of Localization

E. Abrahams, et al, PRL. 42, 673 (1979). All	
  the	
  states	
  are	
  localized	
  in	
  1D	
  and	
  2D	
  without:	
  	
  
(i)	
  magnetic	
  field;	
  (ii)	
  SOC;(iii)electron-­‐electron	
  
interaction

p Orthogonal : TRS and spin rotation symmetry 

■  all the states  localized 

p Unitary :  break TRS 

■ e.g. QHE and QAH, critical point   

p symplectic : TRS  without  spin rotation symmetry 

■  SOC,  metallic phase

Anderson transition in 2D and symmetry class

Beta-­‐function:Possible Metallic Phase?

A. Huckestein, RMP. 67, 357 (1995).  
F. Evers et al., RMP,80, 1355 (2008)



Scaling in IQHE (Unitary class): critical point but no metallic phase.

p The renormalized localization length of integer 
quantum Hall effect as a function of energy. The 
vertical break line marks the Landau level centre.

a b

One	
  critical	
  point,	
  but	
  no	
  
metallic	
  phase.

One	
  critical	
  point,	
  but	
  
no	
  metallic	
  phase.

p The one parameter scaling of the renormalized 
localization length in integer quantum Hall effect. 

JT Chalker and PD Coddington J. Phys. C. 
21, 2665 (1988). 

System	
  widths



Tunable Anderson transition (AT) in QSH insulator

Spin-up BHZ Hamiltonian (unitary) 

p Metallic  phase  in 2D unitary class 

p Anderson  transitions are  dependent 
on  the parameter M 

p TI-Metallic-NI  at large M 

	
  
0τdisV+



Tunable Anderson transition (AT) in QSH insulator

Spin-up BHZ Hamiltonian (unitary) 

p (I)Scaling localization length   

p (II)Energy level statistics 

p (III)Participation ratio 

p (IV)Intrinsic conductance 

Investigations in four possible ways:

0τdisV+



(I) Localization length scaling at different masses M

p One critical point at small M 

p TI-metal –NI at M=0.38 and 0.5 

p  large M  leads to TI-metal –NI 



47

(II) Energy level statistics (ELS) at A=0.28, M=0.38 and EF=0

p Supporting  the existence of extended states



48

(III) Participation ratio (PR) 

p The extended states come  into the gap with increasing disorder 
strength.

PR: 
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Critical behavior

p One parameter scaling  behaviour

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  3.3	
  and	
  3.5	
  for	
  	
  (b)	
  and	
  (d)	
  respectively.



50

AT with different electron-hole hybrid strength and Fermi energy 

p No TI-metal-NI for larger  A 

p Metallic phase outside gap 
(Eg=0.16) 

p Intrinsic conductance scaling 
[see the inset of (d)] 
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Phase diagrams

p Berry phase

   large M and small A  

 πBerry phase or WAL       

                           

                       

           TI-Metal-NI 

02
ln
ln

>−−==
g
cd

Ld
gd

β



 Conclusion on Tunable Anderson transition in QSH insulator

➢Anderson  transition  is  tunable  by  model  parameters  in  the  
BHZ  model.  

➢We  find  a  possible  metallic  phase  in  2D  unitary  class.  
❑ localization length scaling,  the conductance scaling, energy 
level statistics and participation ratio.

➢Our  results  are  interpreted  by  the  Berry  phase  or    WAL.
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Hamiltonian and power spectrums

p Hamiltonian

where

	
   ☞



Hamiltonian and power spectrums (cont’d)

p Hamiltonian

where

	
  



Phase diagram in clean limit + disorder

p Clean Hamiltonian and phase diagram

where

	
  
p Disorder Hamiltonian

	
  	
  	
  	
  	
  
	
  	
  	
  +disorder



Multiple Anderson transition

p Renormalized localization length  Λ  v.s. disorder strength W

◆ WSM—QAH, NI—WSM :  SCBA ◆  WSM—metal: bulk   states



◆ WSM—QAH：nontrival  gap (SCBA)

◆ WSM—metal:  emergent bulk   states

◆ NI—WSM : gap closing (SCBA) 

Phase diagram and multiple Anderson transition

p  QAH—metal—NI	
  

p  WSM—QAH—metal—NI

p  WSM—metal—NI

p  NI—WSM—metal—NI

p NI—meta—NI

☞

➢ multiple Anderson transition

➢ Exotic phase transitions



Phase diagram and multiple Anderson transition

p Clean Hamiltonian

where
p Hall conductance of  WSMs

	
  

	
  

NI 	
  	
  	
  	
  	
  	
  	
  	
  =	
  0
WSM 	
  	
  	
  	
  	
  	
  	
  	
  =	
  1,	
  3,	
  5,	
  7

3D QAH 	
  	
  	
  	
  	
  	
  	
  	
  =	
  8

	
  



Surface states and Hall conductance in x-y plane

	
  



Conclusion on  Anderson transitions in WSMs

◆WSM--metal 
ptwo extended states 
pHall conductance	
  

◆WSM--3D QAH 
pSCBA  and Hall conductance

p  QAH—metal—NI	
  

p  WSM—QAH—metal—NI

p  WSM—metal—NI

p  NI—WSM—metal—NI

p NI—meta—NI

➢ multiple Anderson transitions
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