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* Introduction to topological order
* Introduction to quantum entanglement

* Quantum entanglement measures of topological
order
1) Topological entanglement entropy.
2) Entanglement spectrum of some topologically
ordered states
3) Momentum polarization.
4) Topological uncertainty relation.
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Example 1: Fractional quantum Hall states

* Fractional quantum Hall states are first topologically
ordered states discovered in nature.

* To understand fractional quantum Hall states we can
start from integer quantum Hall states.

* Hall effect: perpendicular voltage

due to Lorentz force. ,
PNx=clH Ely »

* In strong field and low Tévﬁ’ N7 ef
temperature, we get

the quantum Hall effect.
(von Klitzing ‘80)
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 Quantized Hall conductance

glH =nel2 /h

e Reason of the quantization:
electron orbits in Lorentz
force have quantized energy

---Landau levels. Electrons °

occupying fully packed Landau
qguantized Hall conductance.
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* Edge state picture

* The quantized Hall
conductance is carried
by chiral edge states. |

* The edge states are
“chiral” meaning they

only move along one

direction. H current /=nel2 /h (VIL—V
* Bulk wavefunction

* In lowest Landau level, the single electron (in symmetric

gauge) has the wavefunction ¥dn=zTn el—[z|T2 /2
[LBT2

* Many-body wavefunction of the fully occupied Landau

12 ]



From integer quantum Hall effect to fractional
quantum Hall effect

* Fractional quantum Hall effect (tsui '82) refers to

quantization of Hall conductance at fractional values
suchas1/3 eT2 //.

* To understand the physics of fractional quantum
Hall state, we can think of the parton picture. (Take
the 1/3 state for example)

C- @090

e Each electron is considered as a bound state of 3
partons each with 1/3 charge.



Parton picture and Laughlin state

* Electron density n=25/4J0 1/3 Y % /5
N —

* Parton density ndi =£/@J0 1/3 2,

* Parton seems an effective magnetic field #/3

* Therefore parton filling 2d7 /B /3440 =1

* Each parton is in an integer quantum Hall state.
Hall conductance JlHl'—l-(e/B )72 //z

el2 /h



Laughlin wavefunction

 Parton wavefunction

e Each parton occupies a Landau level.
e Electron wavefunction

121,

e (Laughlin ‘83)

* Three partons are always bounded into an electron.



Why is the Laughlin state topologically
ordered? 4_?(9

* Consider a torus of the fractional quantum
Hall state and thread a magnetic flux in
the hole.

* Current dy=alH Flx
* When ol =vel2 /A, Ly =vd/dt (®,/PJ0 )

* Threading a flux /c/e, the system should return to
the same state as flux 0 (because there is no AB
phase)

* The charge pumped around the torus is ¢=v

* For v=1/3, a fractional charge is pumped through the
torus. =»One obtains a different ground state.



Fractional excitations

* Three ground states Wie ({247 })=YIpTp=2nm/3 ({
Zil})

* For the same flux in the torus, there are three different
values of flux the parton may see.

=0
@ = 0,2‘23:.(%




Fractional excitations

* This statement about ground state
is related to excitations in the system.
Cutting the torus open, we obtain a
a sphere with two punctures

* Threading a flux /c/e pumps charge
g=1/3 from bottom puncture to top
puncture

* This is the fractionally charged excitation €
of this system, named as quasiparticle
or quasihole.



Fractional statistics

* The quasiparticle with fractional charge ¢/3 and flux
/ic/e also has fractional statistics.

* Two particles exchanging position by “braiding” leads
to an Aharonov-Bohm phase #=7z/3

* Fractional statistics is an intrinsic property of
topological order
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Quasiparticle braiding electron braiding




Example 2: Toric code

* A simple model of topological order
(Kitaev 03’, Wen 04’)

* Spin 1% defined on links of a square
lattice

e 4>0, />0
e Ground state satisfies the Gauss law

* Ground state is a sum over closed loop
configurations of glz=—1.

* The model has topological order.



Topological order of the toric code model

* Topological ground state degeneracy




Topological order of the toric code model

Not all

configurations can

be coupled by the

Hamiltonian.

=» There are 4
ground states

=» Ground states
can be labeled
by flux in the

two directions

(0,0), (0,7),
(7,0), (m7)




Topological order of the toric code model

* Fractionalized excitations

* Chargee [[+Té#olx ;—14/- /

* Braiding statistics S}
O= 1<

{




Toric code model and superconductors

* The toric code model actually is very similar to a
two-dimensional superconductor

* If a 2D superconductor has a finite penetration
depth, it will be equivalent to a toric code model.

* eXm—electron
* m—vortex with flux Zc/2e.

* Actual 2D superconductor has a divergent vortex
energy, which is why it’s not strictly a topologically
ordered state.



Generic features of topologically ordered
states

* From the two examples, we can summarize the generic
features of topologically ordered states

* Topological ground state degeneracy determined by

genus M
--Laughlin state 37¢g, Toric code 4 T

e Excitations with fractional statistics

* Fractionalized excitations can be obtained by cutting a
torus into a sphere with two punctures. Similar for
higher-genus surfaces.

out



Generic features of topologically ordered

states
* Fusion rule of particles %\

* Two particles together must a b

look like a single particle from far away.

s axb=NlabTcc

* Laughlin state: adn xXalm =aln+m, n,m=0,1,2

e Toric code: eXe=1, mxXm=1,
exm=y, YyxXy=1

* Yis a bound state of ¢,72 which is a fermion. (like a
superconducting quasiparticle)



Key properties of topologically ordered states

° Braiding f\r T
# =Rlablc- %\

a b a b

* Braiding phase may depend on the fusion channel of
a,b. In general it’s denoted as AladTc.

e Paradox: With only
two particles, what’s
the difference
between braiding E
and global rotation?

glaba‘
rototion



Topological spin of quasiparticles

* The difference comes from the spin of each particle.

* Braiding phase = global rotation — spin of each particle
= spin of the fusion — spin of each particle

= = = =

RiabTc RlbaTc=ell2n(hia+hib—/Iic)

* Braiding is determined by spin of particles.

* Laughlin state 2Zdn=nT2 /6, toric code Ale =Adm =0, AlY
=1/2.



Non-Abelian topologically ordered states

* The two examples we gave are “Abelian” topologically
ordered states. The fusion of particles are definite, ax/=c

* There are non-Abelian states in which particles have
multiple fusion channels.

* In non-Abelian states, there is a large Hilbert space for given
number of particles.

* The dimension of A particles a
is ~dlal/N,6 dla is called the
quantum dimension of &

* Simplest example:

* Majorana zero modes oX

 Two zero modes can fuse into a fermion occupied state or
non-occupied state.

e Quantum dimension do=v2



Summary of key properties of topological order

Torus ground state
degeneracy

Quasiparticle
fusion rule

Spin of particles

Braiding statistics

Quantum dimension

=
<D

3 4
aln Xalm=aln+m, ‘ZZZT?
n,m=0,1,2 mod 3 B

mxXm=1

01/62/3000}
2

RlemTy

RinmTn+m=nmir/3 RimeTh=—



Part |l: Entanglement
measures of topological order



Overview about quantum entanglement

* General definition: Entanglement is a property of composite
quantum system where the joint state cannot be written as a
product of states of 1its component systems. (from
www.quantiki.org)

* Simplest example: An EPR pair [T)J1 )2 —[A)41 [T)
42

* Topologically ordered states are intrinsically related
to quantum entanglement

* Different topological ground states look identical in
each part of a torus, but look different on the whole
torus.=»To ' rdered gro~-gtates must be
entangled |

~ \ Q@
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Measures of quantum entanglement

* Reduced density matrix

e A state of a system with two A B
partitions

winm winT mTx
* Reduced density matrix

determines expectation values of all 044
* In short, p=27I5 (|Y)X¥Y|)



Entanglement entropy and entanglement
spectrum

* The von Neumann entanglement entropy
S=—tr(plogp )

e S=0if and only iff p=|¥)(¥/| is a pure state without
entanglement.

* For a spin in EPR pair, p=1/2 /, S=log2

* Entanglement spectrum (Li&Haldane '08): eigenvalue
spectrum of p

eig(p)={A41 ,4I2,..Ain}
* Entanglement spectrum determines the entanglement

entanglement properties

* Many more entanglement measures can be defined for
more than two partitions



Entanglement measure |: Topological
entanglement entropy

* A universal subleading term of the entanglement

entropy in a topological state (Levin&wen '06, Kitaev&Preskill
‘06)

o SVUA=allA—Sltopo
L [
b sundory areo

* Example: Toric code




Topological entanglement entropy

* Entanglement comes from the
matching between the
configurations in A and its
complement.

* Locally, each link crossing the
boundary contributes one qubit
of entanglement

* Naively, S=/ZJA4log2

* Actually, not all links are
independent, due to the Gauss

degree of freedom 244 —1
o S=(LIA —1)log2 =>Sltopo =log?2



Topological entanglement entropy

* In a finite size system it’s difficult to do a fitting and get
Sltopo

 Alternatively, some combinations of entanglement
entropies can be used to cancel area law term and
obtain S¥topo

* For example (kitaev&preskill ‘06)

Sltopo=SIA+SIB+SIC ah
_SIAR —SIAC—SIBC
+SIABC S

* Topological entropy probes a
topological order in a single ground state

* In general it does not determine the topological order.
More measures are needed.



Entanglement measure 2: entanglement
spectrum

* Some topologically ordered states such as
fractional quantum Hall state have chiral
edge states.

* Similar edge states appear in the entanglement
spectrum (LigHaldane ‘08, Qi, Katsura&Ludwig ‘11)
e plA=elT—fHledge —eig

log#
]

S 4



Entanglement measure 2: entanglement
spectrum

* Physical reason: gapless edge states are coupled and
removed from low energy spectrum.

* As a price to pay, they got entangled and shows up in
the entanglement spectrum.




Entanglement measure 3: momentum

olarization |
P a

* Topological entanglement entropy does not
directly probe the topological spin of
quasiparticles

¥

&

* To probe the spin of particle, we need to

twist a particle <
* Twisting a particle is equivalent to twisting

half of a cylinder
* We want to measure the Berry’s phase

obtained in this process %




Momentum polarization

e Consider a lattice model on the cylinder, with lattice
translation symmetry 74y (74yTLly =1)

* For a state with quasiparticle @ in the cylinder, rotating
the cylinder is equivalence to spinning two quasi-particles
to opposite directions.

* ABerry’s phase eTi2z/ila /LIy is obtained at the left
edge, which is cancelled by an opposite phase at the right.

* Total momentum of the left (right) edge +27z/4da /Ly
= Momentum polarization AAM =2rhia [ Ly




Momentum polarization

* Viewing the cylinder as a 1D system, the translation
symmetry is an internal symmetry of 1D system, of
which the edge states carry a projective representation.

* |deally we want to measure

S
OO\ A
0
] A
e

Difficult to implement. Instead, define discrete
translation 7.y T/ . Translation
of the left half cylinder by

one lattice constant




Momentum polarization

* Naive expectation: 7YyTL [Gla )~eTRr/lly hla |Gla)
contributed by the left edge. However the mismatch in the
middle leads to excitations and makes the result
nonuniversal.

* Actual result: (Gla [TVyTL |Gla )=exp[R2r/Lly (Ala—c/
24 )—ally |

* The phase part has a universal subleading term

* ais independent from topological
sector a

¢ chiral central charge of edge state
* Laughlin state c=1

e Toric code c=0

* Even if we don’t know which sector is trivial |G¢1 ), Ada can

be determined up to an overall constant by diagonalizing (
Gin [Ty [Gim) .



Computation of momentum polarization

* Twist 7yTL only acts on the left half system

e = UNa=(Gla |[TIyTL |Gla )=tr(pdl TIyTL )is
determined by the reduced density matrix of left half
cylinder

* Momentum polarization 4Ja is determined by edge
states in the entanglement spectrum.

 Analytic calculation of 4Ja : Using the fact that the
entanglement density matrix pd4 =exp|[—fFHledge |
and Aledge is a conformal field theory.

* pl/l describes a cylinder with
different temperature on two
boundaries.

* Only right boundary has finite
“temperature” due to
entanglement with the other half.




* Numerical computation of 4a

1. Kitaev honeycomb model («itaev ‘05). Can be calculated
by mapping to free fermions coupled to ZJ2 gauge

* Results agree with the expectation

1 hla—1 1A hly=
— 1 M1A 16h6¢_1/2

0.8¢

0.6}

C
0.4 / ]
s 20 40 60
Ny




* Numerical computation of 4a

2. Fractional Chern insulators (FCl, i.e. lattice fractional

guantum Hall states)

Similar to Laughlin state, FCI ground states can be

constructed by partons [G)=P[GI1 )Q|6I2 )

16>

e e
/

 Such wavefunctions can be
studied by Monte Carlo.

s Ala=[Ala |eTifla

* Fitting
Bla lly=—Ima LIiyT2 +2x(Ala-
(Tu&Zhang&Qi,’12, Zhang&Qi, ‘13)
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Momentum polarization in more generic
geometries

- )

(hla—c/24 )2n/Lly (hda—c/24sinf2 a 2m/Lly hlam/Lly

* By studying the momentum polarization on a cone and
varying the cone angle, the central charge ¢
contribution can be determined

e ccontribution is geometrical, while ZJa is topological.

 Verified by momentum polarization of a ¢IMPS state for
the Pfaffian wavefunction (Mong, zaletel, Qi)



Entanglement measure 4: Topological
uncertainty relation

* Topological sector can be measured by quasiparticle
paths around the torus

* For Laughlin state, taking g=¢/3 ) ‘
particle around the torus +, 4’&
measures the flux.

* The measurement can be done at any loop=2A long
range order of string order parameter.

* Long-range correlation between loop operators

(@1 )@(ri2 ))=1

* Similar to classical order in a ferromagnet (S(741 )S(

742 ))=MT2

Chao-Ming Jian, Isaac Kim & XLQ, in
preparation



Comparison between conventional order and
topological order

e Spontaneous symmetry breaking leads to classical long-
range order

* Ground states /TT...T), [{l...0)
* Comparison with topological order

e

Spin eigenstate /11...T)and |/ Flux eigenstate /@),
W.l) @=0,27/3 Ar/3
Spin correlation (gdz (741 ) Flux correlation
alz(rd2))=1 between two loops

(P(ril )p(ri2))=1



Comparison between conventional
order and topological order

* Topological order is like a conventional
order after “dimensional reduction” to
lower dimension

* Is that it? What’s the key difference
between topological order and
classical long-range order?

spontaneous

e A torus can be reduced to 1D in two symmetry breaking
different ways

* Two kinds of long-range correlations
for loops @dx and @iy .

* Each looks like a long-range
order but they don’t commute. *J




Non-commuting long-range correlations
between loop operators
* Measuring @¢Jx requires to take a quasiparticle going
around loop X.

* Quasiparticle carries charge ¢/3 and flux 27z/3 (i.e. /c/
e)

* = Fluxin loop Y is changed by 277/3 .
e eTiggdx elTigly =elTiply elTiglx eli2m/3
* Eigenstates of @lx is superposition of

Ply eigenstates t'k‘ H




Non-commuting long-range correlations
between loop operators

-’ A “Schroedinger’s cat

AR AN 1)

A spontaneous
symmetry breaking state

It

* Lesson: Topological order can be understood as
long-range order of non-commuting loop operators




opological uncertainty relation

* Non-commuting operators such as [x,p[=/lead to
Heisenberg’s uncertainty relation.

* For a topological order, loop operators on the torus
cannot be simultaneously diagonalized

* We can define a quantum entanglement measure using
this intuition.

e Define mutual information between two regions on a
torus

o NXI1 XI2 =SIXJ1 +SIXJ2 —

e Mutual information measures
correlation between the two
regions.




Mutual information measures long-range order

* An EPR pair [T)L)—=[)[T), SU1 =512 =log2 , SU12
=0, /J12 =2log2 is maximal.

* For classical long-range order

tfttftrtt o=

S Sy2

433383883 =0

sS4 SY2

Tttt
$3318411

/412 =log?2



opological uncertainty relation

* For topological order, a state :-:-:

e B B
 NX=/XI1 X2 =0, lV=/IV

 Alternative, if we take B B B
|@dy =0), it has
HNX >0, /LY =0.

e /UX and /JY cannot simultaneously vanish.

« /UX+/Y has alower bound, as a consequence of the
uncertainty relation (Jian, kim & xLQ ‘15)

o NX+/IV=>—2logmax—+nm |Sinm |

o SUnm=ndX mlV the transformation matrix between
the two basis, also known as the modular S-matrix.



opological uncertainty relation

* For a generic ground state

[Y)= nTialn |ndX) =)YnTabin|ndl),
NX =—FnTE[aln [T21oglain [T2 , 1Y =—XnTi]
bin [T21loglbdn [T2 .

Laughlin 1/3 SU(2), Fibonacci



More general topology

* On a more generic manifold, any two loops ZJ1 and
£J2 with nontrivial intersection has non-commuting
loop operators

* min (/41 +/43 ) >0,min (/42 +/43 ) >0,min (/41 +
/42 ) =0



Summary of topological uncertainty relations

* In general, we can compute mutual information
between regions in the system ’

* Topological order means & gb '
1) Contractible regions have no mutual information
2) Non-contractible regions generically have nonzero
mutual information L 2
3) When two pairs of loops (X1, A2 - -
and Y1, ¥2) have nonzero intersection, ‘\@‘é
HNX + /LY have finite lower bound. | N

A

* This approach provides a general

characteristics of topological order %:\
which can be generalized to higher

dimensions.
* A direct measure of “long-range entanglement”.



Summary

* Topologically ordered states are states of matter with
ground state degeneracy, fractional statistics etc.

* Topological order is intrinsically related to quantum
entanglement.

* Topological order is difficult to probe, and quantum
entanglement provides helpful characteristics.

* Different quantum entanglement measures can be
defined to characterize topologically ordered states,
such as topological entanglement entropy,
entanglement spectrum, momentum polarization and
topological uncertainty relation.

* Many more open questions in higher dimensions.
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