Topological order a quantum entanglement

Xiao-Liang Qi

Stanford University
Beijing, July 2015

Outline

- Introduction to topological order
- Introduction to quantum entanglement
- Quantum entanglement measures of topological order
 - 1) Topological entanglement entropy.
 - 2) Entanglement spectrum of some topologically ordered states
 - 3) Momentum polarization.
 - 4) Topological uncertainty relation.

Part I: Topological order

Topologically ordered states

Example 1: Fractional quantum Hall states

- Fractional quantum Hall states are first topologically ordered states discovered in nature.
- To understand fractional quantum Hall states we can start from integer quantum Hall states.

• Hall effect: perpendicular voltage due to Lorentz force. $j \downarrow x = \sigma \downarrow H E \downarrow y$

 In strong field and low temperature, we get the quantum Hall effect.

(von Klitzing '80)

- Quantized Hall conductance $\sigma \downarrow H = ne12 / h$
- Reason of the quantization: electron orbits in Lorentz force have quantized energy
 ---Landau levels. Electrons

occupying fully packed Landau levels have a

10

quantized Hall conductance.

i = 3

Edge state picture

- The quantized Hall conductance is carried by chiral edge states.
- The edge states are "chiral" meaning they only move along one direction.

Bulk wavefunction

- In lowest Landau level, the single electron (in symmetric gauge) has the wavefunction $\psi ln = z ln e l |z| l2 /2$
- Many-body wavefunction of the fully occupied Landau level $\prod i < j \uparrow m(z \downarrow i z \downarrow j) \exp[-1/2l \downarrow B \uparrow 2] \sum i \uparrow m|z \downarrow i|$

From integer quantum Hall effect to fractional quantum Hall effect

- Fractional quantum Hall effect (Tsui '82) refers to quantization of Hall conductance at fractional values such as $1/3 e^{\uparrow}2/h$.
- To understand the physics of fractional quantum Hall state, we can think of the parton picture. (Take the 1/3 state for example)

 Each electron is considered as a bound state of 3 partons each with 1/3 charge.

Parton picture and Laughlin state

- Electron density $n=B/\phi \downarrow 0 \cdot 1/3$
- ->
- Parton density $n \downarrow i = B/\phi \downarrow 0$ ·1/3 , i = 1,2,3
- Parton seems an effective magnetic field B/3
- Therefore parton filling $n \downarrow i / B / 3 \phi \downarrow 0 = 1$
- Each parton is in an integer quantum Hall state. Hall conductance $\sigma \downarrow Hi = 1 \cdot (e/3) \uparrow 2 /h$
- Total Hall conductance $\sigma \downarrow H = \sum i \uparrow m \sigma \downarrow H i = 1/3$ $e\uparrow 2/h$

Laughlin wavefunction

- Parton wavefunction $\Psi \ln (\{z \downarrow i\}) = \prod i < j \uparrow (z \downarrow i z \downarrow j) \exp[-1/6l \downarrow B \uparrow 2]$ $\sum i \uparrow (z \downarrow i \mid f \downarrow 2], n = 1,2,3$
- Each parton occupies a Landau level.
- Electron wavefunction
- $\Psi(\lbrace z \downarrow i \rbrace) = \prod n \uparrow \mathbb{Z} \Psi \downarrow n (\lbrace z \downarrow i \rbrace) = \prod (z \downarrow i z \downarrow j) \uparrow 3 \exp[-1/2 \iota I B \uparrow 2 \sum i \uparrow \mathbb{Z} \downarrow i / f 2],$
- (Laughlin '83)
- Three partons are always bounded into an electron.

Why is the Laughlin state topologically ordered?

- Consider a torus of the fractional quantum Hall state and thread a magnetic flux in the hole.
- Current $j \downarrow y = \sigma \downarrow H E \downarrow x$
- When $\sigma \downarrow H = ve \uparrow 2 / h$, $I \downarrow y = vd / dt (\Phi / \Phi \downarrow 0)$
- Threading a flux hc/e, the system should return to the same state as flux 0 (because there is no AB phase)
- The charge pumped around the torus is $Q=\nu$
- For $\nu=1/3$, a fractional charge is pumped through the torus. \rightarrow One obtains a different ground state.

Fractional excitations

- Three ground states $\Psi \downarrow e (\{z \downarrow i\}) = \Psi \downarrow p \uparrow \phi = 2n\pi/3 \ (\{z \downarrow i\})$
- For the same flux in the torus, there are three different values of flux the parton may see.

Fractional excitations

- This statement about ground state is related to excitations in the system. Cutting the torus open, we obtain a a sphere with two punctures
- Threading a flux hc/e pumps charge q=1/3 from bottom puncture to top puncture
- This is the fractionally charged excitation of this system, named as quasiparticle or quasihole.

Fractional statistics

- The quasiparticle with fractional charge e/3 and flux hc/e also has fractional statistics.
- Two particles exchanging position by "braiding" leads to an Aharonov-Bohm phase $\theta = \pi/3$
- Fractional statistics is an intrinsic property of topological order

Example 2: Toric code

- A simple model of topological order (Kitaev 03', Wen 04')
- Spin ½ defined on links of a square lattice

•
$$H = -A \prod + 1 m \sigma \downarrow z i j - B \prod \Box 1 m \sigma \downarrow x i j$$

- *A*>0, *B*>0
- Ground state satisfies the Gauss law $\Pi + 1 = \sigma \downarrow z \ ij = 1$
- Ground state is a sum over **closed** loop configurations of $\sigma \downarrow z = -1$.
- The model has topological order.

Topological order of the toric code model

Topological ground state degeneracy

$$H = -A \prod + 1 \text{ } \sigma \downarrow z \text{ } ij \text{ } -B \prod \square 1 \text{ } \sigma \downarrow x ij$$

$$H_{B}$$

Sphere

Topological order of the toric code model

Not all configurations can be coupled by the Hamiltonian.

- → There are 4 ground states
- Ground states can be labeled by flux in the two directions $(0,0), (0,\pi), (\pi,0), (\pi,0)$

Topological order of the toric code model

Fractionalized excitations

• Flux m $\prod \Box \uparrow m \sigma \downarrow z = -1$

Toric code model and superconductors

- The toric code model actually is very similar to a two-dimensional superconductor
- If a 2D superconductor has a finite penetration depth, it will be equivalent to a toric code model.
- *e*×*m*—electron
- m—vortex with flux hc/2e.
- Actual 2D superconductor has a divergent vortex energy, which is why it's not strictly a topologically ordered state.

Generic features of topologically ordered states

- From the two examples, we can summarize the generic features of topologically ordered states
- Topological ground state degeneracy determined by genus
 - --Laughlin state $3 \mathcal{l} g$, Toric code $4 \mathcal{l} g$
- Excitations with fractional statistics
- Fractionalized excitations can be obtained by cutting a torus into a sphere with two punctures. Similar for higher-genus surfaces.

Generic features of topologically ordered states

- Fusion rule of particles
- Two particles together must look like a single particle from far away.
- $a \times b = N \downarrow ab \uparrow c c$

- Laughlin state: $a \downarrow n \times a \downarrow m = a \downarrow n + m$, n, m = 0, 1, 2
- Toric code: $e \times e = 1$, $m \times m = 1$, $e \times m = \psi$, $\psi \times \psi = 1$
- ψ is a bound state of e,m which is a fermion. (like a superconducting quasiparticle)

Key properties of topologically ordered states

- Braiding phase may depend on the fusion channel of a,b. In general it's denoted as $R \downarrow ab \uparrow c$.
- Paradox: With only two particles, what's the difference between braiding and global rotation?

Topological spin of quasiparticles

- The difference comes from the spin of each particle.
- Braiding phase = global rotation spin of each particle
 spin of the fusion spin of each particle

- Braiding is determined by spin of particles.

Non-Abelian topologically ordered states

- The two examples we gave are "Abelian" topologically ordered states. The fusion of particles are definite, $a \times b = c$
- There are non-Abelian states in which particles have multiple fusion channels.
- In non-Abelian states, there is a large Hilbert space for given number of particles.

• The dimension of N particles α is $\simeq d \downarrow a \uparrow N$, $d \downarrow a$ is called the quantum dimension of a

Simplest example:

• Majorana zero modes $\sigma \times \sigma = 4$ Two zero modes can fuse into a fermion occupied state or

non-occupied state.

• Quantum dimension $d l \sigma = \sqrt{2}$

Summary of key properties of topological order

Properties	interpretation	Laughlin 1/3 state			Toric code				
Torus ground state degeneracy		3			4				
Quasiparticle fusion rule		$a \downarrow n \times a \downarrow m = a \downarrow n + m$, $n, m = 0, 1, 2 \mod 3$			$e \times m = \psi$ $e \times e = 1$ $m \times m = 1$				
Spin of particles		0	1/6	2/3	0	0	0	1 / 2	
Braiding statistics		$R \downarrow nm \uparrow n + m = nm\pi/3$				$R \downarrow em \uparrow \psi$ $R \downarrow me \uparrow \psi = -1$			
Quantum dimension	6 6 6 6 6	1	1	1	1	1	1	1	

Part II: Entanglement measures of topological order

Overview about quantum entanglement

- General definition: Entanglement is a property of composite quantum system where the joint state cannot be written as a product of states of its component systems. (from www.quantiki.org)
- Simplest example: An EPR pair $/\uparrow$ $/\downarrow$ $/\downarrow$ $/\downarrow$ $/\downarrow$ $/\downarrow$ $/\uparrow$ $/\uparrow$ $/\downarrow$ $/\uparrow$ $/\uparrow$ $/\downarrow$ $/\uparrow$
- Topologically ordered states are intrinsically related to quantum entanglement
- Different topological ground states look identical in each part of a torus, but look different on the whole torus. → Topologically prdered ground states must be

entangled

C D

Measures of quantum entanglement

- Reduced density matrix
- A state of a system with two partitions

- $|\psi\rangle = \sum nm \uparrow \langle \psi \downarrow nm | n \rangle \downarrow A \otimes | m \rangle \downarrow B$,
- The average value of an operator $O \downarrow A$ acting on A is $\langle \psi | O \downarrow A | \psi \rangle = \sum n, n \uparrow \uparrow (n \downarrow A \uparrow \uparrow (O \downarrow A \mid n) \downarrow A \sum m \uparrow (m \downarrow n) \uparrow (m \uparrow n) \uparrow$
- Reduced density matrix $\rho \downarrow nn \uparrow' = \sum m \uparrow \equiv \psi \downarrow nm \ \psi \downarrow n \uparrow' \ m \uparrow *$ determines expectation values of all $O \downarrow A$
- In short, $\rho = tr \downarrow B(|\psi\rangle\langle\psi|)$

Entanglement entropy and entanglement spectrum

- The von Neumann entanglement entropy $S=-tr(\rho\log\rho)$
- S=0 if and only iff $\rho=|\psi\rangle\langle\psi|$ is a pure state without entanglement.
- For a spin in EPR pair, $\rho=1/2$ *I*, $S=\log 2$
- Entanglement spectrum (Li&Haldane '08): eigenvalue spectrum of ρ eig $(\rho)=\{\lambda \downarrow 1,\lambda \downarrow 2,...\lambda \downarrow n\}$
- Entanglement spectrum determines the entanglement entropy $S = -\sum n \hat{1} / \sqrt{n} \log \lambda / n$ and all other bipartite entanglement properties
- Many more entanglement measures can be defined for more than two partitions

Entanglement measure I: Topological entanglement entropy

- A universal subleading term of the entanglement entropy in a topological state (Levin&Wen '06, Kitaev&Preskill '06)
- $S \downarrow A = \alpha L \downarrow A S \downarrow topo$ boundary area

• Example: Toric code

Topological entanglement entropy

- Entanglement comes from the matching between the configurations in A and its complement.
- Locally, each link crossing the boundary contributes one qubit of entanglement
- Naively, $S=L \downarrow A \log 2$
- Actually, not all links are independent, due to the Gauss law $\prod \partial A \uparrow / \partial \sigma \downarrow z = 1$. Total number of degree of freedom $L \downarrow A 1$
- $S = (L \downarrow A 1) \log 2 \Rightarrow S \downarrow topo = \log 2$

Topological entanglement entropy

- In a finite size system it's difficult to do a fitting and get *S↓topo*
- Alternatively, some combinations of entanglement entropies can be used to cancel area law term and obtain $S \downarrow topo$
- For example (Kitaev&Preskill '06) $S \downarrow topo = S \downarrow A + S \downarrow B + S \downarrow C \\ -S \downarrow AB S \downarrow AC S \downarrow BC \\ + S \downarrow ABC$
- Topological entropy probes a topological order in a single ground state
- In general it does not determine the topological order. More measures are needed.

Entanglement measure 2: entanglement spectrum

- Some topologically ordered states such as fractional quantum Hall state have chiral edge states.
- Similar edge states appear in the entanglement spectrum (Li&Haldane '08, Qi, Katsura&Ludwig '11)

Entanglement measure 2: entanglement spectrum

- Physical reason: gapless edge states are coupled and removed from low energy spectrum.
- As a price to pay, they got entangled and shows up in the entanglement spectrum.

Entanglement measure 3: momentum polarization

 Topological entanglement entropy does not directly probe the topological spin of quasiparticles

- To probe the spin of particle, we need to twist a particle
- Twisting a particle is equivalent to twisting half of a cylinder
- We want to measure the Berry's phase obtained in this process

Momentum polarization

- Consider a lattice model on the cylinder, with lattice translation symmetry $T \downarrow y$ ($T \downarrow y \uparrow L \downarrow y = 1$)
- For a state with quasiparticle α in the cylinder, rotating the cylinder is equivalence to spinning two quasi-particles to opposite directions.
- A Berry's phase $e i i 2\pi h \downarrow a / L \downarrow y$ is obtained at the left edge, which is cancelled by an opposite phase at the right.
- Total momentum of the left (right) edge $\pm 2\pi h \! \downarrow \! a / L \! \downarrow \! y$
 - \rightarrow Momentum polarization $P \downarrow M = 2\pi h \downarrow a / L \downarrow y$

Momentum polarization

- Viewing the cylinder as a 1D system, the translation symmetry is an internal symmetry of 1D system, of which the edge states carry a projective representation.
- Ideally we want to measure

• Difficult to implement. Instead, define discrete translation $T\downarrow y\uparrow L$. Translation of the left half cylinder by one lattice constant

Momentum polarization

- Naive expectation: $T\downarrow y\uparrow L \mid G\downarrow a \mid \sim e\uparrow i2\pi/L\downarrow y \mid h\downarrow a \mid G\downarrow a \mid$ contributed by the left edge. However the mismatch in the middle leads to excitations and makes the result nonuniversal.
- Actual result: $(G \downarrow a \mid T \downarrow y \uparrow L \mid G \downarrow a) = \exp[i2\pi/L \downarrow y \quad (h \downarrow a c/24) \alpha L \downarrow y]$
- The phase part has a universal subleading term
- α is independent from topological sector α
- *c*: chiral central charge of edge state
- Laughlin state c=1
- Toric code c=0
- Even if we don't know which sector is trivial $|G\downarrow 1\rangle$, $h\downarrow a$ can be determined up to an overall constant by diagonalizing $\langle G\downarrow n |T\downarrow y |G\downarrow m\rangle$.

Computation of momentum polarization

- Twist $T \downarrow y \uparrow L$ only acts on the left half system
- $\rightarrow \lambda \downarrow a = \langle G \downarrow a \mid T \downarrow y \uparrow L \mid G \downarrow a \rangle = tr(\rho \downarrow L T \downarrow y \uparrow L)$ is determined by the reduced density matrix of left half cylinder
- Momentum polarization $\lambda \downarrow a$ is determined by edge states in the entanglement spectrum.
- Analytic calculation of λla : Using the fact that the entanglement density matrix $\rho la A = \exp[-\beta H ledge]$ and H ledge is a conformal field theory.
- $\rho \downarrow L$ describes a cylinder with different temperature on two boundaries.
- Only right boundary has finite "temperature" due to entanglement with the other half.

• Numerical computation of $\lambda \downarrow \alpha$

• 1. Kitaev honeycomb model (Kitaev '06). Can be calculated by mapping to free fermions coupled to $Z \downarrow 2$ gauge

- $\sum z - link \uparrow = \int J z \sigma \downarrow i \uparrow z \sigma \downarrow j \uparrow z$

Results agree with the expectation

- Numerical computation of $\lambda \downarrow \alpha$
- 2. Fractional Chern insulators (FCI, i.e. lattice fractional quantum Hall states) Similar to Laughlin state, FCI ground states can be constructed by partons $|G\rangle = P|G\downarrow 1 \rangle \otimes |G\downarrow 2 \rangle$

- Such wavefunctions can be studied by Monte Carlo.
- $\lambda \downarrow a = |\lambda \downarrow a| e^{\uparrow} i\theta \downarrow a$
- Fitting $\theta \downarrow a L \downarrow y = -\operatorname{Im} \alpha L \downarrow y \uparrow 2 + 2\pi (h \downarrow a + 2\pi (h \downarrow$

Momentum polarization in more generic geometries

- By studying the momentum polarization on a cone and varying the cone angle, the central charge c contribution can be determined
- c contribution is geometrical, while $h \downarrow a$ is topological.
- Verified by momentum polarization of a
 CMPS state for the Pfaffian wavefunction (Mong, Zaletel, Qi)

Entanglement measure 4: Topological uncertainty relation

- Topological sector can be measured by quasiparticle paths around the torus
- For Laughlin state, taking q=e/3 particle around the torus measures the flux.

- The measurement can be done at any loop → A long range order of string order parameter.
- Long-range correlation between loop operators $(\phi(r \downarrow 1) \phi(r \downarrow 2))=1$
- Similar to classical order in a ferromagnet $(S(r\downarrow 1))S(r\downarrow 2)=M12$

Comparison between conventional order and topological order

- Spontaneous symmetry breaking leads to classical longrange order
- $H=-J\sum i \hat{1} = \sigma \hat{1} = \sigma \hat{1} = \sigma \hat{1} \hat{1} = \sigma \hat{1$
- Ground states $\uparrow\uparrow\uparrow...\uparrow\rangle$, $\downarrow\downarrow\downarrow...\downarrow\rangle$
- Comparison with topological order

Spin eigenstate $/\uparrow\uparrow...\uparrow\rangle$ and $/\downarrow\downarrow...\downarrow\rangle$

Spin correlation $\langle \sigma lz(rl1) \rangle = 1$

Flux eigenstate $/\phi$), ϕ =0,2 π /3,4 π /3

Flux correlation between two loops $(\phi(r \downarrow 1) \phi(r \downarrow 2))=1$

Comparison between conventional order and topological order

- Topological order is like a conventional order after "dimensional reduction" to lower dimension
- Is that it? What's the key difference between topological order and classical long-range order?
- A torus can be reduced to 1D in two different ways
- Two kinds of long-range correlations for loops $\phi \downarrow x$ and $\phi \downarrow y$.
- Each looks like a long-range order but they don't commute.

spontaneous symmetry breaking

Non-commuting long-range correlations between loop operators

- Measuring $\phi \downarrow x$ requires to take a quasiparticle going around loop X.
- Quasiparticle carries charge e/3 and flux $2\pi/3$ (i.e. hc/e)
- \rightarrow Flux in loop Y is changed by $2\pi/3$.
- $e \uparrow i \phi \downarrow x$ $e \uparrow i \phi \downarrow y$ $= e \uparrow i \phi \downarrow y$ $e \uparrow i \phi \downarrow x$ $e \uparrow i 2\pi/3$
- Eigenstates of $\phi \downarrow x$ is superposition of $\phi \downarrow y$ eigenstates
- $/\phi lx = 0$)=1/ $\sqrt{3} \sum_{n=0}^{\infty} \frac{1}{2} \frac{n}{p} ly = 2\pi$

Non-commuting long-range correlations between loop operators

 Lesson: Topological order can be understood as long-range order of non-commuting loop operators

Topological uncertainty relation

- Non-commuting operators such as [x,p]=i lead to Heisenberg's uncertainty relation.
- For a topological order, loop operators on the torus cannot be simultaneously diagonalized
- We can define a quantum entanglement measure using this intuition.

 $X \downarrow$

XI

- Define mutual information between two regions on a torus
- $I \downarrow X \downarrow 1 X \downarrow 2 = S \downarrow X \downarrow 1 + S \downarrow X \downarrow 2 -$
- Mutual information measures correlation between the two regions.

Mutual information measures long-range order

- An EPR pair $/\uparrow //\downarrow /-/\downarrow //\uparrow /$, $S \downarrow 1 = S \downarrow 2 = \log 2$, $S \downarrow 12 = 0$, $I \downarrow 12 = 2 \log 2$ is maximal.
- For classical long-range order

Topological uncertainty relation

- For topological order, a state $|\phi \downarrow x = 0\rangle$ has
- $I \downarrow X = I \downarrow X \downarrow 1$ $X \downarrow 2 = 0$, $I \downarrow Y = I \downarrow Y \downarrow 1$

- $I \downarrow X$ and $I \downarrow Y$ cannot simultaneously vanish.
- IJX+IJY has a lower bound, as a consequence of the uncertainty relation (Jian, Kim & XLQ '15)
- $I \downarrow X + I \downarrow Y \ge -2 \log \max_{\tau} n, m \mid S \downarrow n m \mid$
- $S \downarrow nm = n \downarrow X m \downarrow Y$ the transformation matrix between the two basis, also known as the modular S-matrix.

Topological uncertainty relation

• For a generic ground state $(\Psi) = \sum n \hat{1} = a \ln |n \downarrow X| = \sum n \hat{1} = b \ln |n \downarrow Y|$,

 $I \downarrow X = -\sum n \uparrow = |a \downarrow n| \uparrow 2 \log |a \downarrow n| \uparrow 2 , I \downarrow Y = -\sum n \uparrow = |b \downarrow n| \uparrow 2 \log |b \downarrow n| \uparrow 2 .$

More general topology

• On a more generic manifold, any two loops $L \downarrow 1$ and $L \downarrow 2$ with nontrivial intersection has non-commuting loop operators

Summary of topological uncertainty relations

- In general, we can compute mutual information between regions in the system
- Topological order means
 - 1) Contractible regions have no mutual information
 - 2) Non-contractible regions generically have nonzero mutual information
 - 3) When two pairs of loops (X1, X2) and Y1, Y2 have nonzero intersection, $I \downarrow X + I \downarrow Y$ have finite lower bound.
- This approach provides a general characteristics of topological order which can be generalized to higher dimensions.
- A direct measure of "long-range entanglement".

Summary

- Topologically ordered states are states of matter with ground state degeneracy, fractional statistics etc.
- Topological order is intrinsically related to quantum entanglement.
- Topological order is difficult to probe, and quantum entanglement provides helpful characteristics.
- Different quantum entanglement measures can be defined to characterize topologically ordered states, such as topological entanglement entropy, entanglement spectrum, momentum polarization and topological uncertainty relation.
- Many more open questions in higher dimensions.

Key references

```
X.-G. Wen, Int. J. Mod. Phys. B 4, 239 (1990)
```

Michael Levin and Xiao-Gang Wen, Phys. Rev. Lett. 96, 110405 (2006)

Alexei Kitaev and John Preskill, Phys. Rev. Lett. 96, 110404 (2006)

Xiao-Liang Qi, Hosho Katsura and Andreas W. W. Ludwig, Phys. Rev. Lett. 108, 196402 (2012)

Hong-Hao Tu, Yi Zhang and Xiao-Liang Qi, Phys. Rev. B 88, 195412 (2013)

Yi Zhang and Xiao-Liang Qi, Phys. Rev. B 89, 195144 (2014)

Roger Mong, Michael Zaletel and Xiao-Liang Qi, in preparation

Chao-Ming Jian, Isaac Kim and Xiao-Liang Qi, in preparation

Thanks!