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A. Einstein, 1905 £ =mc m = \/mo +p°/c
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E-=myc +pc

P. Dirac, 1928 H=cp-a+myc’p

2 2 .
ol =B =1 In 1D:
a and B are any two Pauli matrices.

ap =-pazaa; =-a;0, In 2D:

o and B are the three Pauli matrices.

In 3D:

Consequences: 0
: O.
*Electron spin . = i
*Positron: antiparticle I O. 0

Positive and negative energy I

...... i 0

Based on the Pauli exclusion principle, /3) = 0 1

Diarc proposed a many-body theory
for electron.




Zero Energy Bound State:
1D example Jackiw & Rebbi, PRD 13, 3398(76)
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The stationary equation:

(m(x)v2 —ivha, ) (gal(x)) _ ((pl(x))
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For either x < 0 or x > 0, the equation is a second-order ordinary differential
equation. We can solve the equation at x < 0 and x > 0 separately. The solution
of the wave function should be continuous at x = 0. In order to have a solution of
|a bound state near the junction, we take the Dirichlet boundary condition that the
wave function must vanish at x = +o00. For x > 0, we set the trial wave function
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General solution: m(x) and E=0

[—ivhaxox - m(x)vzaz] ¢(x) = 0.
Multiplying o, from the left-hand side, we have

m(x)v

1) = =, (x).

Thus, the wave function should be the eigenstate of o,

0y @y (X) = ney(x)

with

B | 1 |
Y+ = E(ii)w(x)-

The wave function has the form

1 1 X / ,
o) s (o ) o= [ o0 |

The zero energy
solution of the domain
wall is robust against
the distribution of the
mass, but depends on
the signs of m at the
boundary far away
from the domain wall. It
is a solution of solition.




2D example: Chiral Bound State
carrying 1 e4/h conductance
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Why Not Dirac Equation?

The Dirac equation is marginal: there is no difference in the equation between m, and —-m,,

H=cp-a+myc’p

m, — —m,




Modified Dirac Equation

Shen, Shan and Lu, SPIN 1,33 (2011)
v: 1009.5502

H=vw a+(m’ -d)/)’




Spin Distribution
in the momentum space

Lu et al, Phys. Rev. B 81, 115407 (2010)
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Topological Invariant

The general solution: The time reversal operator
W, =u,(p)expli(p-r— E,.t)/h] O =—io.a
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1 for mB>0 and 0 for mB<0.



Physical Systems

e 1D: Conducting polymer, p-wave
superconductors, .......

e 2D: Quantum spin Hall effect, quantized
anomalous Hall effect, p-wave superconductor,

ase in Helium 3 liquid,......




Boundary solutions

1. One dimension: the end states of zero energy
2. Two dimensions: a chiral edge state or a pair of

helical edge states
3. Three dimensions: a single Dirac cone of the




One Dimension
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1o, et )




my” —Bpf VD, AN £ @
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P, — —ih&x . X — e_ﬂx

We take h=1

he Dirichlet Conditions

Four roots:



One Dimension: Zero Energy Solution
Zero mode solution E =0 (L >> A«)
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Near x=0

A, (L=x) _ A (L=x)




Two Dimensions: Edge States

0 o 0 o 1 0
H=v Yo+ " |+ (mv' - Bp?
Px GxO)py[oyO]( p)O_l)
mv’ — Bp® 0 0 vp, —1vp,
0 mv: —-Bp®  vp + p, 0
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vp, +ivp, 0 0 —mv® + Bp® /

Notice: the sign difference




- mvz—Bpi VD, N —Bpi —p, - @ _z @
VP, —mv2+Bp§ +ivpy +Bp§ X X
p. —>—ihd,  p,6 —=hk,
H,,=H(x)+V(hk,)

When k,, = 0, the equation is reduced to the equation for 1D and zero mode solution.

When k,, # 0, the dispersion becomes

-Bk;

E, (k)= [ dx(¢*, x*) v
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Solutions for helical edge states!
Quantum Spin Hall Effect!
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Quantum Spin Hall Effect

First 2D topological insulator (Quantum Spin Hall Effect): HgTe/CdTe quantum well
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Three dimension and surface states

= 0 o, 0 o, 0 o 2leo
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Two zero energy solutions for H|

The effective model for the surface states
- (v (W)
R ) B “ <\p2‘v‘lpl> <‘PZMWZ>
\A 0

H, = sgn(B)v(p x 0),



The Dirac Cone
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Detection of spin-momentum locking of spin-helical
Dirac electrons in Bi,Se; and Bi,Te; using spin-
resolved ARPES

D Hsieh et al. Nature 460, 1101-1105 (2009)
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From continuous to lattice model

Mapping the continuous model into a hyper-cubic lattice model:

k. — lsin k.a
a
4 . 2
k} — —sin’ ka _ ~(I-coska)
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Fourier Transformation

Cio =

Z e'knRic (3.2a)

ci.O' J_ Z lknRt ck 0’ (3.2b)

and the periodic boundary condition gives e/*nRi = e/kn(Ri+Na) and k, = 2nw/Na
(n=20,1,..., N — 1). In this way, the Hamiltonian can be diagonalized




Modified Dirac Model
on a Hypercubic Lattice

T T
H = E AC,-‘,,,BnmCi,m_t E Cj,nﬂnmci,m

in.m (i.j).

+it Z [C;‘_I_a’n(aa)nmci.m — CiT,n(aa)nmCi—i-a,m:I .

i.an.m

' = ? =v/2, A=2dt = mv*, t = —Bh*/a* = —B.
d

Denote (C;I.sz. e .CzD) by ClT In this way, the equation can be written in a

compact form

H = Z Ac}ﬁc,_- —t Z c;,Bc,- + it Z [c;r+aaac,- - c,-Tozac,-H] . (3.10)
]
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Find an edge or surface state solution

e Make use of of the Fourier transformation to
reduce the issue to a one-dimensional
roblem.

trip or a finite thick fi
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Su-Schrieffer-Heeger Model




Gap Closing and Re-Opening

1 _ ol 1 o
a, = ﬁzexp[—zk R ]cA’n b, = ﬁzexp[—zk R ]cB’n

Fourier transformation:

H=Z<a;,b;)

(t+0)+(t-)e™™ 0

0 (t+§t)+(t—§t)e”‘)(ak)
bk

H(k) =[(t + &) + (t - &) cosk o, +(t - dt)sin ko,

E, = i\/ [(£+5t)+(t=St)cosk]” +(t—Ot) sin” k

ot>0

ot=0 ot<0
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From SSH to Dirac equation

H(k)= [(t+ o)+ (t—or)cos k]O‘x +(t—oat)sinko,

Taking the replacement f( -k +x

k)=-(t-ot)sinko, + l2§t +2(t - Ot)sin” k&




Numerical Calculation

——5t=-0.1t[ ]
—e— 5t =-0.3t




SHE in HgTe/CdTe Quantum Well
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Bernevig-Hughes-Zhang Model

normal inverted uy (r) = |Te, +%> =51
[ LH
\/ up (r) = F6,_%> =51
HH 3 1

HH us (r) = r8,+§> = E(x+iY) 1
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6 X 6 Kane Model

1 2 1
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Outline to derive an effective model

* Quantum well structure: CdTe/HgTe/CdTe
* Find the bound states at k,=k =0
sing the solutions of the bound states of




Forky = ky =0,

3




a solution for quantum well ¢;. Using these two states, one can have an effective
Hamiltonian near the point of k # 0,

h) = (o] (@) HK) (:gg) . (6.66)

(uy., us, ug) gives other two states. In this way, Bernevig, Hughes, and Zhang derived
an effective model for a quantum well of Hg'Te/CdTe [12],

~(hk) 0
HBHZ—( 0 h*(—k)) (6.67)

where h(k) = e(k) + A(kyox + kyoy) + (M — Bk?)o,.




Quintuple layer

Bi — p; T —,

2—
Se —— pz —
p. orbital

Crystal Structure of Bi,Se,



The three-dimensional Dirac equation can be applied to describe a large family
of three-dimensional topological insulators. Bio Tes, BipSes, and Sb,Tes have been
confirmed to be topological insulators with a single Dirac cone of surface states.
For example, in Bi,Tes, the electrons near the Fermi surfaces, mainly come from
the p orbitals of Bi and Te atoms. According to the point group symmetry of the
crystal lattice, p, orbital splits from py , orbitals. Near the Fermi surface the energy
levels turn out to be the p, orbital, |P1+, T), |P1+, i), P27, T), and |P2z_, i),
where &+ stand for the parity of the corresponding states and 7, | for the electron
spin. Four low-lying states at the I" point can be used a basis to construct the low-
energy effective Hamiltonian [11]. In the basis of (|P1+, T), |P lz+ . ), |P22_, T),
| P2, i)), we keep the terms up to the quadratic order in p and obtain

H=¢p)+ Y vipiaei+|[M— > Bip}|B (7.1)

I=X,y,Z I =Xx,y,Z




P-wave pairing superconductor

In Bardeen-Copper-Schrieffer theory for superconductivity, the effective Hamiltonian
has the form

h k2 | g
H Z( )ckck ZE(AkC_ka +Akckc_k)
hlk? X hk’ . 1. -
H =5 Z ( - M)Ck O e 5 Z ( o MJC—kC—k i Z 5 (Akc—kck + A C—k)

. . . + +
From the anti-commutation relation €_,C_;, = 1- C_;C_y

(h2k? )
1 i ' — U Ak C,
Heﬁ‘=_ (¢, c4) 90 7 ;
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Bogoliubov-de Gennes Equation

The BCS wave function:

BCS) = n(uk +v,c.cl, l 0)

k'

with |+ vk|2 =1

n’k’



p-wave superconductor & Dirac Equation

For a p-wave pairing superconductor,

ZAkaC k ZA (CoCr = ZA (G C

1D: A, =Ak =-A,

[
hzk2

K =-A kO, +(
2m

Bogoliubov Transformation

2D (p+ip)-wave:

Majorana Fermions

K, =-A, (kxax +kyay)+( >




One-dimensional end state solution
& Majorana fermions

no,
K =Ajd o —|—0d. +ulo
eff 0" x>~ x (zm X lu)z

There is one solution near x=0 and one near x=L for mu>0. The two solutions are
degenerated. Due to the particle —hole symmetry, there is only one state, in which one
half is located at x=0 and the other half is located at x=L.

Lerti e A = (i Hlys )y [Hlwi) =0
£=0 il W CWFR TN E: = i‘A
= pm— ] [ X A 2
L% £ Y. =E Yy im%




Vortex and Majorana fermion

W= (f(r)e;e/z ) P(r) = \/;(f)
g(r)e g

I
iAd,0, +| -u-2—3 |0 |p(r) = Eg(r)
2m

It is exactly equivalent to the 1D modified Dirac equation! There are one zero energy
modes near r=R for mB>0. Due to the particle-hole symmetry, the real bound state has

one half near the centre and one half near the boundary.

The quasi-particle is a linear combination of particle and holes: its creation operator is
equal to its annihilation operator, i.e., Majorana fermion.




Superfluid He-3: A and B phase

w He-3 B phase
Solid Helium
Ay1(k) = A(—ky + iky);
Ag(k) = Aky;

Pressure P (Bar)

A_1(K) = Ak, + iky).

Y = (CE,T’ o Gkl —Cok )

Heee = A (kxﬁfx T kyﬂ‘f}' + kzwz) + &P

Aok) = > V(k — k) e p00 )
k/

A(K) =D V(k—K) e o0,
k/



Model for Weyl Semimetal

My Ak, —iky)
Ak, + ik,) — My

M = Mo — My (K2 + k2 + k2)

It is a massive Dirac equation with mass Mg — M, k?

o —

or an effective model for A-phase of liquid He3 superfluidity.
S. Q. Shen, Topological Insulators (Springer, Berlin, 2012)

MoM; >0 My = M[k2 -k} — &k — k2]
There exist two crossing points at (0,0, +k.)

Near the two points the model is reduced to
Hj: — Mj: 0

M, — (A’/%x,A”/%y, qclekcEz)



Berry Curvature
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Non-Zero Chern Number as a Function of kz

ne(ks) = —(1/27) //dk dk, Q(k

ne(k,) = 9 [Sgn(MO - M1k2) + sgn(M)]

For My/M; >0

ne(k) = — gsen(M) [san(k? — K2) + 1]

The Chern number is 1 or -1 when kz
IS between the two Weyl nodes and the
system is half filled.



Weyl Semimetal

C=0 C=1 C=0

poe—

Hosur & Qi, 2014

Fig. 1. (Color online.) Weyl semimetal with a pair of Weyl nodes of opposite chirality (denoted by different colors green and blue) in a slab geometry. The
surface has unusual Fermi arc states (shown by red curves) that connect the projections of the Weyl points on the surface. C is the Chern number of the
2D insulator at fixed momentum along the line joining the Weyl nodes. The Fermi arcs are nothing but the gapless edge states of the Chern insulators
strung together.



Sau-Lutchyn-Tewari-Das Sarma Model
For Topological Superconductor

HO - Z CIT(,O. (6(1()0’() + a(kxay - kyax) + Vz()'z)aa, CR,O-’

k.o.07
V = Z (Acl‘;Tciu - h.c.)
k

erform a unitary transformation to diagonalize H,

Ckt\ COs % —e ™%k sin % g +
Ck.| e'% sin % cos % Ak —




The second transformation is to diagonalize the part of s-wave pairing

aTk,+ B (cos B —sin & ) ka,+
o in 2 Yk
a_y _ sin 5+ €Os %5 by _




Equation and Basis

H, = vp-a+(mv’ - Bp”)f

quation has a physical meaning only on a pt




Summary

H=vwp-a+(m" -Bp*)B

. The modified Dirac equation has a boundary
solution with the condition: mB>0;

. Non-topological impurity: in-gap bound
state;

. Topological impurity: vortex-induced zero-
energy state, Majorana fermion
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Topological insulators are insulating in the bulk, but process metallic states around
its boundary owing to the topological origin of the band structure. The metallic edge
or surface states are immune to weak disorder or impurities, and robust against the
deformation of the system geometry. This book, Topological insulators, presents a uni-
fied description of topological insulators from one to three dimensions based on the

modified Dirac equation. A series of solutions of the bound states near the boundary Sh u n A Q i ng Shen
are derived, and the existing conditions of these solutions are described. Topological
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and three-dimensional topological insulators and superconductors or superfluids are
introduced, helping readers to better understand this fascinating new field.

This book is intended for researchers and graduate students working in the field of
topological insulators and related areas.
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Quantum States of Matter

Spontaneous Symmetry
Breaking & Order Parameters

Ferromagnetism

Antiferromagnetism

Superconductivity

Charge or spin density wave

Free energy:



